Message-ID: <1635760968.253.1632427549352.JavaMail.bigchem@cpu> Subject: Exported From Confluence MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_Part_252_1437369993.1632427549351" ------=_Part_252_1437369993.1632427549351 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable Content-Location: file:///C:/exported.html LIBRARY meta-learning

LIBRARY meta-learning

LIBRARY meta-learning technique was originally suggested by Tetk= o (Tetko IV et al. Large-scale evaluation of log P predictors: local co= rrections may compensate insufficient accuracy and need of experimentally t= esting every other compound. Chem. Biodivers. 2009 Nov;6(11):1837-1844.). The following excerpt was taken from a doctoral work by Sushko (Sushko = I., Applicability Domain of QSAR models. Doctroral work. 2011. http://mediatum.ub.tum.de/node?id=3D1004002)=

=20
=20

Sushko I, Applicability Domain of QSAR models. Excerpt=20 Icon=20

=20

Given a predictive model and an additional set of new experimental measu= rements (referred to as =E2=80=9Clibrary=E2=80=9D), it is possible to corre= ct the model by taking into account these measurements. The process is call= ed LIBRARY model correction (because we complement a model with a =E2=80=9C= library=E2=80=9D of experimental measurements) and is performed as follows.=

To obtain a corrected prediction for a molecule J, we calculate the orig= inal (noncorrected) prediction  given by the original model and find K molecu= les from the =E2=80=9Clibrary=E2=80=9D {Ji, i =3D 1..K} nearest to the mole= cule being predicted. The nearest compounds are defined by the correlation = coefficient in space of model predictions.

Then, we calculate the expected residual for the molecule J as the avera= ge residual for the K nearest compounds according to the following expressi= on:

 

Finally, we correct the original prediction by subtracting the average r= esidual:

Thus, the LIBRARY correction assumes that for a new compound a model wil= l behave similarly to compounds from the =E2=80=9Clibrary=E2=80=9D. Such te= chnique is especially useful in case if retraining of the original model is= infeasible due to high computational complexity or unavailability of the o= riginal training set. The LIBRARY technique was introduced by Tetko and was= shown to significantly increase the prediction accuracy for the lipophilic= ity and distribution coefficient models.

 

http://mediatum.ub.tum.de/node?id=3D1004002=20

=20
------=_Part_252_1437369993.1632427549351 Content-Type: application/octet-stream Content-Transfer-Encoding: base64 Content-Location: file:///C:/c79990f883190ad41dff584e80a72579 iVBORw0KGgoAAAANSUhEUgAAAaoAAACwCAIAAADR173oAAABHmlDQ1BJQ0MgUHJvZmlsZQAAGJVj YGDScHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgwmCdmFxc4BgQ4MMABHn5eakMGODbNQZG EH1ZF2QWpjxewJVcUFQCpP8AsVFKanEyAwOjAZCdVF5SABRnnAJkiyRlg9krQOyikCBnIHsPkM2X DmGfAbGTIOw7IHYR0BNA9huQ+nQwm4kBbA6ELQJil6RWgOxlcM4vqCzKTM8oUTAyMDBQcEzJT0pV CK4sLknNLVbwzEvOLyrIL0osSU0BqoW4Dww4nD1dFYDhRaJ3CQNQ+IMZjHAsAhdDAsmlRWVQJiOT MWE+woyaxQwMOtv+//+/FiHmlwuMP1UGBpYohJj2MSABFDuvCgDH806sBRQr+QAAAAlwSFlzAAAL EwAACxMBAJqcGAAAG1JJREFUeJzt3X9UU/fdB/BPngjrBYpiYxV7xBqosai1yrDWBqWuAx0+fWof PPRI7exq2wWHtbaubq5xUn1m52obPOistvXYhsmRyeZgAu1xqKzaoNYWdAYBFY+CJQZ/AFcwlzx/ 8ENAQpKbe5Mb7vv1l4bkfi+fJG/u997v/X4VdrudAADk5798vQMAAL6B+AMAmUL8AYBMIf4AQKYQ fwAgU4g/AJApxB8AyBTiDwBkCvEHADKF+AMAmUL8AYBMIf78A1e2doKih6AXsi0cUXPZ2h/ffXDC 2jLO1zsK4D8Qf/5BGbvurK3cEK8iUmn1h6wtexaplETBsekrkxlGnbwmq7DKdnZdrNLXOwrgP4b4 egfAdU3X6ppJs2qzflYYERHXWPb5mj/+a3Je+Z7ESOQegLsQf/6jseZMLWlWzZumJCJLWeaKlUem b/7409gwRB8AH4g/f8FZivcXsMOSNA8pucrs1F/lzczYv3dGmK93C8B/If78xZXivMMsM+tZtWn5 Mzvp7W17ktDhBfAI4s9PcJfN5ddpRNnv51S9eOjQuthgX+8QgN/DlV//wJ08kGMmdcSDxJ7Y9OtP KjHABcBjiD+/0Hwyv8BM0S9u/scBw1wqWT0vvaDR1/sE4O8Qf/6AK8/POUOapPnTVOOX78rTqWu2 LXk+swKHgACeQPz5g44hLykdQ15GJm7YqtdSyer0jGMWX+8ZgB9D/EkfW5n9eQGrnjNzXOel3rBZ +l2bU8K/yUh9K7ua9e3OAfgvxJ/UcdW5esMhlpmkjVF1P6h8eOrMiGCq2Z2a8HJmGY4BAfhQYJlz CbuUvfCJ1Ny67v8zycbavYtUluyFEam5PQ/7mBRjrXGRCgMBAdyA+AMAmULnFwBkCvEHADKF+AMA mUL8AYBMIf4AQKYQfwAgU4g/AJApxJ9PtRWlDVWICGu/ATiG+POpwFkr3pvLiLf9ugYr4g/AAcSf bzHjl+/K003s/eBEXWG9naeWqsIdH+q0nZF6x3rtJvIPoH+IP58bmbhljyFe1eOR09sWLMms5DeV CxOZuHTF1uJy40tqImKtlhuIP4D+If4kQDlp+b5dOnWPTjBb+Ma8d4oaeScXE7nozwcMcxmyXrPe EWIXAQYhxJ80hM3dYFyt7XkWsGZnmi67mv+hGzN+0eIkprHB2sZ7E3brhZrr3j549EGj1y9WW21e bdErpFhJiZUa8ScRyrAZq3btfEl99xG2JmflkozD/Nf0UMUtSOK/DrDdWpKh21HZznsDftMotVdk vby2sH5QHSZLtJJSKzXfU+wghoaj+vjeF4I9uQzSWmWYrzWc4fPS22Wb5i4ynG7i2zQvPmnUbrfb 21tPb3l27gff3m73etPikG4lpVVqxJ/E2Mp7XwYhYuYazC3e3YlrR96Jn73pZOvgb7Tb9W/0s6e8 869bvmldWBKvpIRKjfiTHmt+r8sgRKROL7TavNV8++2T//fE2GWFNzhvtehZo62FulAHXZtQXaHr GdCwN/XBuYbK227vgLR49vYJUkynlZRMqRF/UmQzG/r0gZl4g9k7Adh+3rhw/OPry1xozWY1GZLV DBExWt2HWYVVd19jazCmpxdaRWjU0Z58ptN2HzUz6mSDye0/GNaDK6aM0f3zBs99kAZPK2kXophO KymVUiP+pMlmLUxX9wpAlVZ/yOU44Y+rNMxm4jeddqG73WBM7nvDikqr22Q0Ndith/TxvzA2uPqd caNRh2wNxhTGo4Pl9paDb0YEzN9+wUe9RiEIUUm7x8V0WkmplBrxJ1n3XgbRpBjFPgRsMuljSKM3 OW/G1mD8Rbz+kNVWVZi1JrlPb50YtS7f5bB2vVFnGyEiYjT6ozy31HxA9+CwJzad8ma3X1CCVNIu QDGdVlIapcbAF8lSzdBv35mi6fGIOWfp6+Iubc6V5+eYxz73zFTna8bdPl8V/mr6U2HKyMS09Xur b1lNewz6ZDURkUqr27pnw1xXB9240egArOfOXCEiouiU+ZN5biloonYWczz3y7NeHi8iFGEqSQIU 02klJVJqn4YvOGM9pNf2vhAs5mUQm0mvoTGpuVdE2r6IjXb3xN263NFX86n1T5IywXDOL/u/gr19 AhTTaSUlUWoc/Ulb2Cz9J+/26gPXbFnwfFalKIP5WyqKvzST+vHo4WJsXdRG206UFrNEREyCNiaQ 92aYqMeiQ7jyI6arnuyMjwj29glRTKeVlESpEX9Spxy/bF9er8sgbMnqeekF/O8Gcejqt8eqKSRK E8E/P3zUaPN3X5tuEhGFJy2IUzl7tmOKoKgJ0fTD4dLTLR7sjY8I9fYJUkynlZREqRF/0qcMS3z/ gKHntIBszbYlz2dWCHwIeOf8d2XXKHpCVJDC1Zc0lmVnZmZmvp8WNyLo6cx7jknZysx5QYoRcWsd 37rHo9F7ceX5OWeIiGhS3BMj+W+HSBGhmRTC/XCi4qLdk83w4mExBakkCVZMp5X0Zam7+bDjDe6o L+wzLSATrz/aIGQLVQYtUXBq7nXXnm4z6TW9dihGb+p9l5XtqF7D9P8jvo062RPPL3reOfzO2ADP TiDyIUAxhaikXcBiOq2kj0rdE47+/MXIxA1be10GYUs2fVAs4GXgtqqz3xMpQ0NcnH1aGbvurN3e Y4DOuYNHa3s/Y9zMOR29docTz7jbaH+4xnPmWiIiRpMyb5qHFz2HqEaPYehmlfkS/5lyePC8mEJU koQsptNK+qjUPSH+/EfYLP2uzSndI+zU6Xkfp3hwnquPdrapiaPgcQ+NGOLeC1Uz1qxeEkpEN78/ W9v7gzwycWuJaXe6lgkbMbzfE1K8G+3pSnHeYZbIoyEvd90XOuw+oqZbTT6Zl4l3MQWpJAlaTKeV 9G2piRB//kUZmbLhDS0RETPXcOD9xDCPv+x32SyX65tJef/9jNuficCICY+FEtGdhms3+/5MFTtv xih10vxpwQI32s1yJK+gjogodPrMKf224pZh4WNCiK5erm/1eFO88CymEJUkYYvptJK+LjXiz79w 1TlrDKVEmpSdhmXjRVwiyU2jNJNVRMTWW270/VFz2ZYdltcWetondYw7by4XYMiLC6oz43gvuTc0 rcjVHp48iikNiD//wVVkLV2ZUxOs1X+8bdF40b4CHmi41mdhOa7yk1/nTF69+FHR9rb5ZH6Bmcjj IS/Sg2KKz7MTBeA9V4vSX3ijxMLEGz7Rz+I/ibMogqMmRBLVdK6reffbeSlnzd5HDbmCdtJ76x6l wcxakDBarFY6RC4/Yl8ubhNEcimmNODozy+wlZlLFmw7Ter0vH3LxDnwCxg1LiKE7jRc47E0nHKo ajhDfdbV5BqLNm8bsXpD4gBjxzxplIiILpgOmlkiYpKeTVAJWJcx6ogg4bbmFn7F9LiSJFIxnVbS h6VG/PkBrrHonXlvFLJMvN6oF+2PvyIw5P5gYusa+MRf6APDA6j3upqNhWvW0++cTHzgSaNExFm+ +foEkaCdtXpzuYWUwaHBvvpq8Cumh5UkEYrptJI+LzXiT/K46mxd2s4a0qTs3K6fIeIJmYDIRx9T Enup7pr7r1UOHxFORHfX1bxatObP9LvVTsPahUbZ6oJVcUEKReTPs6t7r33MlW3J2M+SoJ21dvbW LY6Cx44dFSDMBt3Hr5iuvX1eLKbTSkqg1Ig/aWs8nLFkZU4NqXUfiH65Izxqokp559LlH9yfg0g5 /IERRF0jctnq7N+up18O2O11uVFL3uqFfypliWp26z443OPyKdf4VfYXZpaI0axakeJSZ+1qUdok RdC8gZaQZy/XVDfTYxOifHfdk2cxXXn7BCumEJWUQKkRfxLGVWbrXssotTDxGw9s8WDNShcFPBIb 9yBVmatuuZ9/Q1WjGCJiG641cZU7dLumfOLiDjtt9IalvvMrppo24aG738vGf3+0/i81RKRealgR K9QfBnutuaIpYOxTU8cKtEE++BXTlbfPi8V0WklJlNpnt9uBEy3mjmkOvLfOUes5Q4JygPtzB3pp xxI5oVp9lj5ZZ6xyfbJ1Z412zz3X8xZUm9nYMRGs+iV32nKqvWn/KyFen/GwL57FdOHt814xnVZS EqVG/ElT11ofgs9rMCDu1Pop9OD8z2rcfuXdG/LdXpjYWaOdt8Ey2nVHrTa7vaWq0KDTqviuZzSw JpM+hgKe++zKHUE36ya+xXTh7fNaMZ1WUhKlRvxJUddKb15Y3KNPw2XrHw/hNWvIGYM2lEgVbyh3 e4edN9pgMurvLifCaHUfZhlNbv1VqDUmh3e+Otno8JXtpw2zhgUkbL/g4zW4+RbTpbfPw2IKVElp lBrxJz2d6/y6tVqQY7ajes0Ml/uztysNiQERbx5scfdTWWtM1vBdi453o+6xmQ3xTHiysdbhMxqM yYwqYbvZx+nHv5j+U0lplBrxJzFdJ2KEWtjXZtJrmBTX15xsv/LFwrDJKw6699WzmbNSUndX8d1h fo26qcmkj6GBSsFdz10crFq6/7qPF3rzpJh+UkmplBrxJyld070JdhK61pgc7ua8lde/0c+McGMJ apvVlKVLN/LOPl6Nus92VK9hBuqv2WuNyeOm6P99W7x9cM7zYvpFJaVQarsd8SclLVXGlwS93NG5 wQE/qf1ob/jbKxNeNF5pc6mJ/Lfj4zvOo3vEnUb5sJn0Ghqov8ZVGmZHvJxbJ9YOuECYYkq/khIo dSfEn1R0Xe7gdfWgHw0mQ4qaiNdK1W11f0+Pf7O4vyMIm9VkSFYzTLzB3GDardOGagXIPmeNes5Z f6398v5Xnn4x96J3T0WJVExpV9I3pe4f4k8aBLzcYTUZDRt1d6fFH/AUtSPtV4/8/pWVB67c8xm9 e+GPiFGn8D/f506jHnPSX2ur+3t6/LL8Bm9/I0UrpnQr6atS9w/xJwG2ckO8eDfz8hrGbLfbuerc 9DW5dX2GZXV1qLU6Q6GQ0Tdgo56ymfSaAY6C6/akLf38XKv3v5FiFlOalfRZqfuH+PO57tVtRPJT QxXfpbTa21rbvP5JFb7RJpM+hihGbzp/1LBpz73XlNpaJfN9FJQEKymxUuOeX99iq7PfSs0ocXzj uMdCozRj+N5TrggIDPBs0VgJNXrx4GclysVvpkTe87cmIDDQ67+lN0iwkhIrtcJu9+Eiw7LXVpQ2 Yu62e5a0EZLWUHVkeaSYLQD4KcQfAMgUOr8AIFOIPwCQKcQfAMgU4g8AZArxBwAyhfgDAJlC/AGA TCH+pKSxIC0yKOjpzEq+S1UTV120NfOjtLigCWvLeG8EQB6G+HoHQDjcsbXPfMQ9ennztlJWM8fX ewMgdbjrY9Dhjq2dOCeDVplOrxNs+VuAwQidXwCQKUnHn916oea6aGewrl+sttrE2ri7LNkLgxQK hUKhGL0w+5Kv9wZAFqQbf3ZrSYZuR2W7aA20V2S9vLaw/o5oDbhDtWhvS4vZMJdhZi1IGN31KGfJ fqEzFR0LWpht8eWuA/grqcZf6/EPUneErf3t3OGinb4a/rONfwjf9vKWU63SOPvJfWfceoiSnk1Q df/KStWiPU4XfGvZu0i8qaIBBjFpxp+1dO2q/J+8/cvoYDFbUQRGL14zff+StYeaxGzGRdzJAznm YUkL4pBlAN4hZvxxFZlPj3C/a2Zv/Xb723sm/ua1KXwmKW4rShvqoJc4NK2orc+zh05P/9Wkz97/ 9Fwrj6YE1Xwyv8Dcq+cLAOISL/7YyqxVq0ssbMH+Yos7ly/sF//6h12try55JpTXvgUmbr1hs5o+ 67HUGaNONpisNvuNrYn3BqrqJ68sqvvThwdFnXHZOa48P+cM06vnCwDiEiv+uModr68uZImILSs9 4Ua2tFft/zh/dOqCiR7EgDIsdnGG7iedKxGol279eFlsmKPtDZvx7BzFzq17LvY9MvQmBz1fXPoA EJE48cdVZL3+Xtf6PXUHvza7fPjXfOKL3YciZs3WeLj22e3z5iqWiIjRvLjoGYfZR0QK5omEpLDS T/f+R7yLzM40n8wvMNPo6EeG934clz4ARCRG/LGVWavepRW718R0/Necc+Cki/nHlefnmMc+98xU T7uA1nNnrhARUXTK/MlONhY0UTuLOZ775Vlf5R9Xnp9zhjRJ88edysz4azXu1QXwCuHjj6vc8fq7 9N72lSlx00M7HjIfPXrBpa4ld/JAjjlMGxvl6a3IliN5BXVERKHTZ05xevn4gYmPP8wd//KrGl/2 f6n24GcHAhfr/zeSf/Rfyl44WjHkyQwzS+aM6UOCJqw9hiwFcETo+OMqsl430Hublo1nAmO0CZ1d 2Ioj31x14cUtFcVfmkn9ePRw588dUNuJ0uKOrm+CNsb59WMm6rHoEK78iMmVnRSBcsa6sy32liNb F8eGebShMYv2XunZLT67bgaupAA4Imz8dXR739i+bJKSiFRxC5LCiYioriDviAun569+e6yaQqI0 EXyX5e7U/N3XpptEROGuDaNTBEVNiKYfDpeebvGsYQDwI0LGX1e399XxnYccI5+Im9TxL5eGv9w5 /13ZNYqeEBXk2ULwHafSiIgmxT0x0pVXKCI0k0K4H05UXOz3BpDqzDhnl18d6mewIQBIgnDx16Pb 2/VQ4MNPPqnp+CdbZT5/28kWaiuOX+WCHxk32sP0O3kgx8wSEWmefPJh1w4kfzRsxAMBdLamVhp3 AAOAFwgVf727vV2U0+aldA5hOZOTXz7w4V9b1dnviZShIZ6NeeEaz5lriYgYTcq8aS6e+hqiGj2G oZtV5kv9HapFLj/ibPSJQ/2OtQYACRAm/u7p9nZRambO6Tj953T4Szvb1MRR8LiHRnh22fdKcd5h lsilIS933Rc67D6ipltNkpkCCwBEJsRk953d3r/36PZ2C43RxjLbalgiqjWfa+RiHd7UZbNcrm8m 5f33Mx5FsntDXroNCx8TQnT1cn0rTQnypH0XKRSe9fABBi+vTUHv+dFf/93eLkpVwrNJHanIHs4r vuJxc05w583lbgx5AQD58jT+HHZ7u7k9/MUTHXePkctDXgBAvjzr/A7U7e02/JHo0UR1RMSWm89z JOKcJt1DXiQ/cxRWmALwOU+O/jhLzvrVtUmrFz86YKAFT5uf1Dn8xVyQf7LZwdMCRo2LCKE7Dddu 8L9P64LpoJklIr4zR41RR3jjxB8ASIEH8ddYqH/XvGTrmsSB5lMhcnX4iyIw5P5gYusaeMcfZ/nm 6xNEvHq+9eZyCymDQ4P7KwiGPQMMRrzj72rRmt8VJa7fkOjCbRXKhzSThxEREVt7pqbRwbMCIh99 TEnspbprA22LrS5YFRekUET+PLua7fUTrmxLxn6WePV829lbtzgKHjt2VIB7LwQAv8Uv/rjGog1p RXFbN8x17Rb90QkLZnVe/h3g7rfwqIkq5Z1Ll38YYOIpS97qhX8qZYlqdus+ONzjuIpr/Cr7CzNL xGhWrUhxt+fLXq6pbqbHJkT1e7EYw54BBiNe8ddYuCbtSKIL3d4urg1/CXgkNu5BqjJX3XKcfzcs 9Z3HfKppEx6623zjvz9a/5caIlIvNayIdfe0n73WXNEUMPapqWPdfCEA+C8e8edOt7ebampcTMfs f9fLzZcdHP6NnB43Wdl85vtKtv+fE9FQ1aiOGNWk/bF7pCFXma17LaPUQuqXjMXvuxzK3ewtVWfP 0CgB5hkEAP/hfvxV56zfdqpm2/zh7l0CiH6j1OmKH4Hq2bMm0aWTp39w+BRVwlur4hkiZoSSu8kR sdVFmWnxT6Xm1KqTDabjny6K5HHHcMuZ46eaAmKemTnC/deCv2guW/vj/j+bQS9kd5+Q6X+lwMi0 IkenrMGfuXkqy9ZgTPFsSoLwZGOt482XrX88JDg19/pA+9BgMuqT1V17wWh1H2YZTQ1u/iI9tJ82 zBoWkLD9Qjv/bYCfaDiqj+/+ADPa9N33fHJsVbtTuj5djFb3YVZhlc0nuwqiczf+xHa70pAYEPHm wRYvRlGDMZlRJWw3I/3koLVQ17kGA8XoTU39PMOar1MzxGh1u01Wr+8eeJOYy5zz8aOohYufu/XV /mPXvdVi+41DhQeCn/tVShQmIZAXTdL8aX0nxeCq85Y/u2TX6GX55cUerz0AUie1+CNF+Py30+/f t/eYt9Ydv1ywpzQq7eWEoZIrBYigeyGEe6eD5BrLMl9IWPbt1I/LSzYl8TmJDH5Ggt/5obHpv/7p v7Lz67wx83L7ubyPTfHv6mJ/5IXGwPdqjx48R0T3TAdpKctM/fHsveGZR0oyF3iw2B74EwnGHylU P1v/ftiOTSWiHwDarxS8/7cxm3//PG72kAnLt0dO3CTq3fNtPJa5UDt775jM8uLMJESfjEgx/ogC Rv33794bmrOusE7MeVHu1P9j4+b73vrw+Qic9ZMHzlK8v4AlIgqdM3OKkqjzZN/zBko7tH8jOrxy I834I1I8qH33tzP/mbWvXrTZ5+v3vfeP6Ts2/0yF8JOL7oUQwhO00YHEVhesip/8m7qF+47vXR7r 9mh58HsKu5QnnrPfabMNCQwQJ5/utLUNCQxE9skHd2ztxDkZZpaYFGOtQb3lhTmbaNXBvetmYGJc mZL2XV6KgEDxTsoFBGIuAlnpXgGViQk9o5udWjDOcGrf8oFm6oVBTqqdXwCBdS+EQGzpjg25ZmKP 5xVW859bF/wf4g9konvIS8ya3evjGSKylKxelTXA/Bow2CH+QB56DHn5n0Urt2+cyxARW7j69R2V OAKUK8QfyEGfIS/M+GWbNsariIgtee/1rAoEoDwh/kAO+gx5IVJOWrb9XXSBZQ7xBzLAXTaXXyfq tQ6Mcvyr6ALLHOIPBr+7Q156rYCKLrDcIf5g0Ose8hIaEze11xBndIHlDfEHg173kJdH5jwZ0edn vbrAr2w61ohDQBlB/MEgx5Xt2Vp6zywvd/XoApduTF1TiEU95APxB4Nbd8/33vlNuygf0jzaMQE+ W7NtyfOZOAkoF4g/GMQsZZ//ZuWmE0RExNYe/Gth9b1n97jGss93FtV1v6Tkjafj0zKL+nkmDDbS nvEFgKdL2QufSM2t6+9HMXrToXWxHb3g/2TGzXC4BCuTYqw1LlJhIqxBC/EHADKFzi8AyBTiDwBk CvEHADKF+AMAmUL8AYBMIf4AQKYQfwAgU4g/AJApxB8AyBTiDwBkCvEHADKF+AMAmUL8AYBMIf4A QKYQfwAgU4g/AJApxB8AyBTiDwBkCvEHADKF+AMAmUL8AYBMIf4AQKYQfwAgU4g/AJApxB8AyBTi DwBkCvEHADKF+AMAmUL8AYBMIf4AQKYQfwAgU4g/AJApxB8AyBTiDwBkCvEHADKF+AMAmfp/zox6 CqJ88dYAAAAASUVORK5CYII= ------=_Part_252_1437369993.1632427549351 Content-Type: application/octet-stream Content-Transfer-Encoding: base64 Content-Location: file:///C:/1a7f95978ecae1a3447a84a59a44acfc iVBORw0KGgoAAAANSUhEUgAAAE4AAAAtCAIAAACPqMq+AAABHmlDQ1BJQ0MgUHJvZmlsZQAAGJVj YGDScHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgwmCdmFxc4BgQ4MMABHn5eakMGODbNQZG EH1ZF2QWpjxewJVcUFQCpP8AsVFKanEyAwOjAZCdVF5SABRnnAJkiyRlg9krQOyikCBnIHsPkM2X DmGfAbGTIOw7IHYR0BNA9huQ+nQwm4kBbA6ELQJil6RWgOxlcM4vqCzKTM8oUTAyMDBQcEzJT0pV CK4sLknNLVbwzEvOLyrIL0osSU0BqoW4Dww4nD1dFYDhRaJ3CQNQ+IMZjHAsAhdDAsmlRWVQJiOT MWE+woyaxQwMOtv+//+/FiHmlwuMP1UGBpYohJj2MSABFDuvCgDH806sBRQr+QAAAAlwSFlzAAAL EwAACxMBAJqcGAAABw5JREFUaIHtWn1sE+cZ/3nGUS82LkkdCK3iDJPOIRRCQRkVu4A7TQEEqlrJ KNJouxXQpGtlCaZtIKW6jiqdNEVbd0HZhlBFxXZdo1rqGoXhQpcVaJtxKfQjBGHHCRBEnPTiy5dj J/adb38Q4o+c7bNTpxLj95/f597neX7v877P897j08iyjP8PfO+7dmDx8IDq/YgHVO9HLCpVWbjZ PyblS/vYrT5BTCNfPKqy8PHr1AlPNG8GoldbXnrNNRRJ7cHiYLqracdPmZ5APm1EZ3qOPbPjD19M RxXFqaiKAsfYLQQAgqTebHF5xZiIZx0Ol5CNE/6Lh23bmq7MZDMnJ4xdordVH/7PpJIsBVWetRNJ 4TeRVBPL8bJwnrbtY3lReaICotNXfre5/BXXuJS15zMuyphiNxopl+LK8e/tXb6D8UzPlyhSFXl2 n40+L4heV0vD3djGgbBQ7VnENHqD3fODDY1d6tcmyRmBO0mRpph1O8MJaZQJHQery6h/jc8TKFIN cEcb4uImCty7DG23zMb2ZFpLyZA8zDbC1tQTVD9lHkSerZ9db4vDlcF6NNhxyKzbffxmctDznZYC HL0JVprLNaYxJQBAWOnOzJqmzlDLl21u+jLpwOS52Ejd7a3u8md/8qR2IVqE3muDAICq+t3rMmsq XEtuJT53nrueWNjyS1W6cqbVXUTWVCxZiJaRi++f9gGA8YdbqvUqJjyydsP3pc/PfdQfjh/NK9Xg 1bPn3LBsqCpeiJbw5U/OhgCAqCM3FaiZQVSsrzJI3Re54fjRvFId/uK/fTBUWM2qHEyBqa8+4yYA YOWu52pNmZ4GAGgKKyqr8M2FT3qCcaOpqY52vdPc3Nz8+5drSwqfbvYkX11DnuadhZqS2tcujKbS ELnxVZcfVZUVhRpVHipC6m5vvQYAeKJ28wqVkzRm6xMG6ZvLV2/Ft1gUc5jI0daEuZtoLvFOJ3bS VkJZNAcvQwL6vc4xVWlWGTFPskrjkQuHy3VJ1wzlqGprjl6XZVnmO2kbAQC9HZ0DiU+s2vJjCwBg lBfC8zUACHuvfw1ojYbke1cWkEZ73QMAQFjrd25Un8aXmB4tIzDhdd+O+Zb+rJqeajjycyOAia+v DyQSWrH9zx9zpxwkUVRSrHgUo6FAQIJ+1WMlC0i/g2ffvxAC1JaZGB4yLnsICEwGYq91mdJSgbly vRFAhPdPJMtMNTufKrXs2r1RsQCII3eGpqBdupTIPfVlXWbmsGxlmQEYvjM0MzeU0Y1S6zoTgNDQ yHiyaKrr2ImRX+zJYl9lCemGuzu7MpMOqlec9wuJSVjyvPWb1nVHXliTN6ZTV9pPu4Fsykw6ZDxH +orK1UA/fLwgATFat1sb3lvDOLcX5S+m98oMsfW5ukcXri9jVLUPm4oJABHBPzEXVmn0wz/+peTI G9vTFDpd6SqzARHeP55jN+km1+EOASB2PVNnym1ByyzmwrkfmakaHynWAQgJI3M+j7oaGvHqGzuK 0k3UFBiW6hHy8blRlUYufXYZyHX3Drm7R6DVG/UxgpnPqra4ZCUACH7hbodq+MOGv+LVIxm3rm71 mvVahG77/CkfCfWd/nVtoUaz+mfv9IUSJFLXsdfbQsh190ZDk5MS9OXlpbrYYOabh5chAcBCuQRZ DnrZfaTKLkT43wdXaFHdmPziOIe4tk7ixUYUXA4LoPYFdT4CbfsMAMl448ZUZOCHTaUEgBDvD0ie E9Tb1W8d25V2696D7vGa2uXwur2TKTqi4yNDs7E0bax8LLZJRj/9U+M/+gFYDjAHa3I4pvKA+2pA V/6jJ8sTRjNitpdlJOkW2k6xXvWtk5lepk6b5pI8F9X4+63oZuutAGB5MRtb8YgG2vYbULbXORg/ qoJq7Ga/lnINZWVT+rKxGst3n+xPIZ+9YxPk0U5BlOWg18VQpElFryw9Ahy9CbpnTw5G4kfV9Jau MaQRMNmY7qyNi12NGwxpX254jqVjTUmCpN5sYTk+WzsJiPYwW5fp6o7fTGx9q6E6wNqtJH0+qyb3 PUx7mO0686GOoHLHPS/gWTthqjvuTjKZmarobqnfe8qb626KDv59T9G6gx05LVQukMacL+hNB9rG kvN+eqqiwLVQDjZnnrIsy/LYJXqLWakHnR8MsPZV1fSn89v7aagGve2/stnuJowFIcr/c3/l8+xg eIF61EDyMNvMLzl9Crbiqc7+JUXYGDfPnaJII/kt8JRlWZbDvg8ctkNn8x7Y6J22/U8/77ylmBji qQ6w9pX3yi1hqc/9fCo5MXzxt/t/eWYwn9kp7PvAYXulnU9hI55q0Mu+aAEIkmJc3ybNWUh9TkeD 0xfJ/GRu8L378oG/9c6kXEyNvJifaMmRsLikQLeAXmkaRMLhJQUFqXUvLtXvFA++cLkf8T+DCQUq hhECOwAAAABJRU5ErkJggg== ------=_Part_252_1437369993.1632427549351 Content-Type: application/octet-stream Content-Transfer-Encoding: base64 Content-Location: file:///C:/cc4c5267906583e3e2da8867ed777ac8 iVBORw0KGgoAAAANSUhEUgAAAW4AAAA+CAIAAACEOWabAAABHmlDQ1BJQ0MgUHJvZmlsZQAAGJVj YGDScHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgwmCdmFxc4BgQ4MMABHn5eakMGODbNQZG EH1ZF2QWpjxewJVcUFQCpP8AsVFKanEyAwOjAZCdVF5SABRnnAJkiyRlg9krQOyikCBnIHsPkM2X DmGfAbGTIOw7IHYR0BNA9huQ+nQwm4kBbA6ELQJil6RWgOxlcM4vqCzKTM8oUTAyMDBQcEzJT0pV CK4sLknNLVbwzEvOLyrIL0osSU0BqoW4Dww4nD1dFYDhRaJ3CQNQ+IMZjHAsAhdDAsmlRWVQJiOT MWE+woyaxQwMOtv+//+/FiHmlwuMP1UGBpYohJj2MSABFDuvCgDH806sBRQr+QAAAAlwSFlzAAAL EwAACxMBAJqcGAAADRFJREFUeJztnX1sE+cdx3+ZG9QjqQvMvKQViTC0phQaRsRg7FLcSkuCgqpV chVptF0L3SqD3NGpHUhpr0ubTpuijR0o7RCqmNiuAzUqKwqrYVpWSFuPi6AvAdQL5qWumoQ6uQRw bJKcffvD745f7uW584uez19RbN+dP7/z957nubvnykRRBAwGg1HH9/K9ARgMphTAUYLBYBCAowSD wSAARwkGg0EAjhIMBoMAHCUYDAYBOEowGAwCcJRgMBgE4CjBYDAIwFGCwWAQgKMEg8EgAEcJBoNB AI4SDAaDABwlGAwGAThKMBgMAnCUZETkr10ZD2q4gvGvL/OChsvPH9qqK11vMYpRII6S9Ij8R6/b DwyEtFxH6Hzns685h6e1XEce0FxdiXqLUawCRcxMbvd1NP2MvuDTeDWhyQv7Hmv642e3QxqvSEf0 UFeK3mIUrUAcJTMZ7d1l3dhxblKPdY2foTbW7vrvLT3WpQO6qSsxbzGKWCCOkhRCt8/9bl3NDueN oMIFTDrtxgwtQKPdOXMf8b63ZUETPXBb3WYXAirUyZUmFrA3oZ+2mggb45X9yeIWqFGUCDxL28wE ABCkfU+n0y3EX/IyDoeT12a9qgldZZ64f3V7n5DzndkQePagnTRFi0mYbTTLZ1ok37OzdrH9XzdU rVEx6CqlVp0saWK+vWXCz9FNBAAQLYxXpokiF6hNlHgZG5GSjSbS3sGwXpE/RVm3yrasF8EBeiNh 7bjgV70kwcu0RByYHc5sFQ35e16sLt+8/5ouPaoU0FUKhTrp0sQ8e8uAwNHW6BewyzxeFrtALaJE 8DJbrdQpXnA7O1vDR7wECLO9u1DbJD6WqgMLxSIIOh9L1YW/r4Vy5VjexIf2BXPWdXyutE+lGISV QqJOjjQxj94yIPTT1nijQNJXiFP0ArWIEh/b1ppwNBN49jBN2cyRI97BrI2uvCK4KEtlza7T0wiW 5WFsVQAAUEexOUfjPYytyrCu44Levwl0lUKjTpY0MX/e0uLn6Cajtf1Qa10kTGTlQvELxMOucQSW ssDiLV2DCJYV6zhkGvRKYuLz9h+BoYG+VEBtdVmgUSdPmlhQ3gSOthqbaM6fMAD6E9otdcNKQCC+ RC2G//zJf3NgXr1invplTZ39+GQAAIBoIOtm5Xw7seyhFZXB/l72uvpV5wM06mRKgwLyFjzf+TwN b3TsuJ+YVUc2RHqK53vPSNywUhCIoyTG9c/+dxkql1mqJRUhKxNffMreBACoan683pTr3QBls5ct XwHfnf74gl/1uvMBEnVypUHBeAsMdL78Kvxq/46VBgAw1T/eHO5lDB0/2jsiaQmlIFCzKBnre3fv 3r17/7C9fv7sR/YOpN5PEBjYu2l22fz6106PabUFMpm++kXfKKxYvmx2mdpFBfu7j1wEAICV9esW SvlEWbVlZWXwu7Pnv055gvPlvfVlSrl7+4kpCetWXykk6uRLgyzedCQ4cOD5V+GN/b+43xD+x8J1 9SvDfwWOHzs5IuFWmtIQqL6PNBOBpSxJK5kxCCS4KAuR/qV84aZJgIotXeOqlxT/+tIH3qZP76op T9PFddOk4tJK6DCjqRQKdUqkiZm96YbQT1vNVro/cZMTrErbvUtCoCatEsPatq9EURS9Lip8lv1S j8uT/I4lGx41AwDAmJeXcujUnCn3V18CGIyVqZdZyCY4donzAAAQlpZNawzSPnSH6Z7FBNx0c98k 21j6Qq/i2t54qzFXexlJpVCoUyQNMnvTieSuTRTDmk0tkfy9eKS7P2ezpDQEajpWYlrfuvsZIwDc /PIrT/KWLmx86yP2kIMk5s6fp35sQj2hgM8XhIol986/Q+2iBk8ePR0AAFjRsnmV5JreaZxzJ4Dv li8vt8+rqRQSdcqkQX69zejaRDFYNjwaHi4JcEc+PJcjS0pEoMbDrrOqlz9kBIBp7+jN1NdMazet X2Ru3rymQtttkIQw8u3wBBjuuotQa2Sk9+jxIQAA4w831Er/anOqFlcCXP92eFLl+hWivFIo1CmU Bvn0lnDWZsZrxjpybeS/Hu7SWPYsKRGBWp/BWWRZZQKAwPDIjdSXJvr2HRj55RMyGmPFQPAq1y/v hFyBkM9KaSJN2xHr9F2bKAZTw2PN4SwJnD56chDRV8pIIex1ep0M9o7yydEcHHjnN0dW7X7qgdJK kolz3cc5ADkn5AqMPFSq+KRl7NrEUHJKWDEFIVD1yEAOKpYtXwpwBYa8fBAg7v2bI63vPUB3Nc4t rSSJnZAjHn684Z58b40s8lcpjaQtfaFXfAHZ0hKJdG0+SNe1iTHvvhX3AAwBQKCfuxoEk3Z7emHs dVq3Sgx3m+YRADDNj96MHeyCYyf+9Pb83W82Sj37rT3li5ZUV8K0d/SGqhk1r7E9XAAAiObHGpTs O4vN1bPVrF8FiiulWp1aaaCvt+DIkfbdnuZczbSKNZubI2dnuePd5yYyv7NEBGoeJcbvzysHgAA/ EhM15mxth1febJqr8brlUDar8q4KCAx51URJcOTMp2cBFLUzh7n+ETBUGCuSK6LDJWoRFFdKpTo1 0iCjN+0Yc1Kvcs+81ZqzmSb5lHCJCNS8AIZ586sAAPhRPjwt7fUTrX+BV3YXWtemfOkDDxkg8M3Q aI43Bi4ff7l+dlnZ0p+/ezmQ9Eqwb9/rxwKgqJ0ZCty6FYSKmppF5fI+iA7FlZKgThtpoL+36yda XznR2C6pQW2417JqDgAABDwXr2S5qrtEBKq9xi0nkes1wzPB+N3MVrIw5yuZ+s/OhQaobc8xeUPC XEHJlwgKvNNhBpA/UYUoiqLoO7a1EoCk3bK3Gx2KK5VTnUbSRJ29CbzTYc49pVD8/fGJiLJPqlYS ArVvFt5tWkQAQMA76gsOHLD/tfadfc2F1LWJUn7f2voF4Obct7I+NeDGyHDkqGBas/ze+PF67JM/ t//jCgCYn6N3rpXb4hI93Hlfec2Pf1Aj84MoUVypnOq0kQY6extztm7vbZTQtYki+ZRwaQhUHUa5 iMzfYCSpTspmZ9zq5zrUiMlLdIMh500TseND4p0OAse0WAAAzE8r+oIh37FtlaimSlGM8krlUqeJ NFFfb8NO+2r5EwBepMnw7CXZWw2lIFD7KInfD/ag3Tks/WM8e3iPnSQAAEyk4/2E6YtFwe3sjEz2 RZht7c6Ix9hsdFHj/CmKNBE2Zij19iqvi7ISM9qcwc/ba2HB5oNXsm5Y5HYVgmxz8YIo+t1O2k6a JMzKmwUfS9VB+U8PDqKYv00xCislirnVaSFN1NWbmvsqc0dJKQjUYRa1cDCbUu6ezIqXpVvMBGmn nW4hvIuvjwa23939EklEwyX8oAArzcWj2kVZjBbKJfCnKNIEANHHCMTmzozeujaz+yr0ta+ulHCD ppdlqPhMqARp39PJsPKfVRAjdIF+eE55w/5reX5ElIJKRcmtDrU0UU9vCaMeCqmyMZ6sayh6gTpE iYexWUjqlOSWoZ+jmwjCSrnCmnwsVRedPlvgXW0kYUpYWrjG8ZahwFIWqKNcZxnHLsbNMbYHIyWM REwPx+xyMBeHmRZjmieV3B6gG8urX+zx6/ub9jI2wtSwn8v3w+bkViqRfKgrFG9IKHqBmkeJwHW2 bDnklnyYEzjaSmRoDYZb4ElD6OEoiUW+j6XqgLDtoX/fySX1HgWWskCVbc+ets5sh9zQ4N+fmLtq Z4+ep5iC411PVZieOzae58mO5VYqBd3VFYo3VBS7QE2jRODZTruDkbN3DjvtD2Y4cxZOjZTmd3h8 JNoqEVyUhSDILRRzMfnz4YhZ30Id5nJszPgZakO1rg9q8jC2JbXUJ3l9zJyCSs1EZ3WF4A0txS1Q uyjxu7tfslrDo0SSCWdB+ockJqdGwvtj0ROeSCpp6CTpbU00l3ugO+T957blTzKDUzI2WwXBAXpj 9bNdQzqtLh2KKpUOPdUVgDf0FLVAhFESeWQkYaU5L3vIThpJ2XtnJAvSR4mHsVUlN1jC1+fEekOp 4yZxvIwtU6cpDVNDHzisL57U4+AQ+vbYtkee7Ppa394+gkplQC91+fGmA0UsEGGUxB7nAwCEuUVR r9vL2IiUKBF41yHmrC9NlPDddnPi0ImHsVWlm9gyc8RkInS997fbfv3hoMZ76tTQBw7rjm6v3j8I FJXKhB7q8uVNF4pWIMIo8buZp80AsXO4igjv5ZYWhhNEURTcTrqtLTq+IbCUBSKnbwT3+w7SRJAv dccuzsnY9MgUMVkJXu5ytHYNaXnBwtDh7c/97dKk/j8IJJXKjNbq8uZNL4pTYOE9nY930TZL5IBp o5LPnPvdzvbIqXWzjepM/B2g6t0kEJqanNL02DBZsj8HTdWVsLcYRSiwTBTz9wQRDAZTKuCn82Ew GATgKMFgMAjAUYLBYBCAowSDwSAARwkGg0EAjhIMBoMAHCUYDAYBOEowGAwCcJRgMBgE/B/wx1yS EJrbngAAAABJRU5ErkJggg== ------=_Part_252_1437369993.1632427549351--