Message-ID: <1808976063.107.1632427486787.JavaMail.bigchem@cpu>
Subject: Exported From Confluence
MIME-Version: 1.0
Content-Type: multipart/related;
boundary="----=_Part_106_1939211581.1632427486786"
------=_Part_106_1939211581.1632427486786
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
Content-Location: file:///C:/exported.html
N.B.! These descriptors can =
be only used for model development on OCHEM web site and cannot be exported=
.
ADRIANA.Code comprises a unique combination of met=
hods for calculating molecular descriptors on a sound geometric and physico=
chemical basis. These descriptors can be used for a wide range of applicati=
ons in all areas of chemistry, in particular in QSAR/QSPR.
ADR=
IANA.Code contains a series of methods for the generation of =
3D structures and the calculation of physicochemical descriptors and molecu=
lar properties based on rapid empirical models. In addition, it contains a =
hierarchy of increasing levels of sophistication in representing chemical c=
ompounds from the constitution to the 3D structure of a molecule. At each l=
evel, a wide range of physicochemical effects are included in the molecular=
descriptors.
Av=
ailable descriptors
The following tables list the descriptors that are calculated by the OCH=
EM web service of ADRIANA.Code.
For further deta=
ils about the descriptors availaible in ADRIANA.Code,=
their scientific and technical background and units, please refer to the&n=
bsp;ADRIANA.Code =
program manual.
Global molecular descriptors
Global molecular descriptors represent a chemical structure by a structu=
ral, chemical or physicochemical feature or property of the molecule expres=
sed by a single value.
The total number of global molecular descriptor=
s is 19.
Descriptor |
Short name in header line of cs=
v descriptor file |
Unit |
References |
Molecular weight |
Weight |
[u], [Da] |
[1] |
Number of hydrogen bonding acceptors |
HAcc |
- |
[2] |
Number of oxygen atom-based hydrogen bonding acc=
eptors |
HAcc_O |
- |
[2] |
Number of nitrogen atom-based hydrogen bonding a=
cceptors |
HAcc_N |
- |
[2] |
Number of hydrogen bonding donors |
HDon |
- |
[2] |
Number of oxygen atom-based hydrogen bonding don=
ors |
HDon_O |
- |
[2] |
Number of nitrogen atom-based hydrogen bonding d=
onors |
HDon_N |
- |
[2] |
Octanol/water partition coefficient (logP) |
XlogP |
[log units] |
[3] |
Topological polar surface area |
TPSA |
[Å2] |
[4] |
Mean molecular polarizability |
Polariz |
[Å3] |
[5-8] |
Molecular dipole moment |
Dipole |
[Debey] |
[9-15] |
Aqueous solubility (logS) |
LogS |
[log units] |
[16] |
Number of rotatable bonds |
NRotBond |
- |
[17] |
Number of Ro5 violations |
NViolationsRo5 |
- |
[2] |
Number of extended Ro5 violations |
NViolationsExtRo5 |
- |
[2] |
Number of atoms |
NAtoms |
- |
- |
Number of tetrahedral stereocenters |
NStereo |
- |
- |
Molecular complexity |
Complexity |
- |
[18] |
Ring complexity |
RComplexity |
- |
[19] |
Shape and size descriptors
Shape and size descriptors characterize the size and the 3D shape of a m=
olecule, e.g., if a molecule has a more enlongated or a spher=
ical shape. These descriptors represent a molecule by a single value.
=
The total number of shape- and size-related molecular descriptors is 8.
Descriptor |
Short name in header line of cs=
v descriptor file |
Unit |
References |
Molecular diameter |
Diameter |
[Å] |
[20] |
Principal moment of inertia of 1st principal axi=
s |
InertiaX |
[Da·Å2] |
[21] |
Principal moment of inertia of 2nd principal axi=
s |
InertiaX |
[Da·Å2] |
[21] |
Principal moment of inertia of 3rd principal axi=
s |
InertiaX |
[Da·Å2] |
[21] |
Molecular span |
Span |
[Å] |
[22] |
Molecular radius of gyration |
Rgyr |
[Å] |
[22-23] |
Molecular eccentricity |
Eccentric |
[Å] |
[21] |
Molecular asphericity |
Aspheric |
[Å] |
[21] |
Topological or 2D property-weighted aut=
ocorrelation descriptors
Topological or 2D property-weighted autocorrelation descriptors [24-25] =
are calculated from 0 - 10 topological distances (i.e., the number=
of bonds on the shortest path between two atoms), and sampled for each top=
ological distance (11 distance bins). Thus, for each atom pair property a v=
ector of 11 values (n) results.
The total number of 2D proper=
ty-weighted autocorrelation descriptors is 88. The following table lists al=
l 2D property-weighted autocorrelation descriptors.
Atom pair property |
Short name in header line of cs=
v descriptor file |
References |
Identity, i.e., "1" for =
an atom |
2DACorr_Ident_n |
- |
=CF=83 charge |
2DACorr_SigChg_n |
[10-11] |
=CF=80 charge |
2DACorr_PiChg_n |
[12-14] |
Total charge |
2DACorr_TotChg_n |
[10-14] |
=CF=83 electronegativity |
2DACorr_SigEN_n |
[10-11] |
=CF=80 electronegativity |
2DACorr_PiEN_n |
[12-14] |
Lone-pair electronegativity |
2DACorr_LpEN_n |
[12-14] |
Effective atom polarizability |
2DACorr_Polariz_n |
[5-8] |
Spatial or 3D property-weighted autocorrela=
tion descriptors
Spatial or 3D property-weighted autocorrelation descriptors [26-27] are =
calculated from 1 - 13 Å and sampled in steps of 1 Å (12 distan=
ce bins). Thus, for each atom pair property a vector of 12 values (n) results.
The total number of 3D property-weighted autocorrelation =
descriptors is 96. The following table lists all 3D property-weighted autoc=
orrelation descriptors.
Atom pair property |
Short name in header line of cs=
v descriptor file |
References |
Identity, i.e., "1" for =
an atom |
3DACorr_Ident_n |
- |
=CF=83 charge |
3DACorr_SigChg_n |
[10-11] |
=CF=80 charge |
3DACorr_PiChg_n |
[12-14] |
Total charge |
3DACorr_TotChg_n |
[10-14] |
=CF=83 electronegativity |
3DACorr_SigEN_n |
[10-11] |
=CF=80 electronegativity |
3DACorr_PiEN_n |
[12-14] |
Lone-pair electronegativity |
3DACorr_LpEN_n |
[12-14] |
Effective atom polarizability |
3DACorr_Polariz_n |
[5-8] |
References=
span>
- Atomic weights were taken from www.webelements.com and are cur=
rently implemented up to the atomic number of 109 (Mt, Meitnerium).
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental a=
nd Computational Approaches to Estimate Solubility and Permeability in Drug=
Discovery and Development Settings. Adv. Drug Delivery Rev.&=
nbsp;1997, 23, 3-25.
- Wang, R.; Gao, Y; Lai, L. Calculating Partition Coefficient by Atom-Add=
itive Method. Perspect. Drug Discovery Des. 2000=
, 19, 47-66.
- Ertl, P; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surf=
ace Area as a Sum of Fragment-Based Contributions and Its Application to th=
e Prediction of Drug Tansport Properties. J. Med. Chem. =
2000, 43, 3714-3717.
- Gasteiger, J.; Hutchings, M.G. Empirical Models of Substituent Polarisa=
bility and their Application to Stabilisation Effects in Positively Charged=
Species. Tetrahedron Lett. 1983, =
24, 2537-2540.
- Gasteiger, J.; Hutchings, M.G. Quantitative Models of Gas-Phase Proton =
Transfer Reactions Involving Alcohols, Ethers and their Thio Analogs. Corre=
lation Analyses Based on Residual Electronegativity and Effective Polarizab=
ility. J. Am. Chem. Soc. 1984, 106, 6489-6495.
- Kang, Y.K.; Jhon, M.S. Theor. Chim. Acta 198=
2, 61, 41.
- Miller, K.J. Additivity Methods in Molecular Polarizability. J=
. Am. Chem. Soc. 1990, 112, 8533-8=
542.
- (a) Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of Automatic Thre=
e-Dimensional Model Builders Using 639 X-Ray Structures. J. Chem. =
Inf. Comput. Sci. 1994, 34, 1000-1=
008.
(b) CORINA by Molecular Networks GmbH, Erlangen, Germany.
- (a) Hinze, J.; Jaffe, H.H. J. Am. Chem. Soc. 1962, 84, 540. (b) Hinze, J.; Jaffe, H.H. =
J. Am. Chem. Soc. 1963, 85, 148. (=
c) Hinze, J.; Jaffe, H.H. J. Phys. Chem. 1963, 67, 1501.
- (a) Gasteiger, J.; Marsili, M. A New Model for Calculating Atomic Charg=
es in Molecules. Tetrahedron Lett. 1978=
, 34, 3181-3184. (b) Gasteiger, J.; Marsili, M. Iterative Par=
tial Equalization of Orbital Electronegativity - A Rapid Access to Atomic C=
harges. Tetrahedron 1980, 36=
em>, 3219-3228. (c) Gasteiger, J.; Guillen, M.D. Extension of the Method of=
Iterative Partial Equalization of Orbital Electronegativity to Small Ring =
Systems. Tetrahedron 1983, 39<=
/em>, 1331-1335.
- Bauerschmidt, S.; Gasteiger J. Overcoming the Limitations of a Connecti=
on Table Description: A Universal Representation of Chemical Species. =
J. Chem. Inf. Comput. Sci. 1997, 37=
, 705-714.
- Streitwieser, A. Jr. Molecular Orbital Theory for Organic Chem=
ists. John Wiley & Sons, Inc. New York, London: 1961.
- (a) Abraham, R.J.; Hudson, B. J. Comp. Chem. 1984, 6, 562-570. (b) Abraham, R.J.; Hudson, B.&nbs=
p;J. Comp. Chem. 1985, 6, 173-=
181. (c) Abraham, R.J.; Smith, P.E. J. Comp. Chem. 1987, 9, 288-297.
- (a) Saller, H.; Gasteiger, J. Calculation of the Charge Distribution in=
Conjugated Systems by a Quantification of the Resonance Concept. =
Angew. Chem. Int. Ed. Engl. 1985, 24, 687-689. (b) Saller, H.; Gasteiger, J. Berechnung der Ladungsverteilung=
in konjugierten Systemen durch eine Quantifizierung des Mesomeriekonzeptes=
. Angew. Chem. 1985, 97, =
699-701.
- (a) Yan, A.; Gasteiger, J. Prediction of Aqueous Solubility of Organic =
Compounds Based on a 3D Structure Representation. J. Chem. Inf. Co=
mput. Sci. 2003, 43, 429-434. (b) =
Yan, A.; Gasteiger, J.; Krug, M.; Anzali, S. Linear and Nonlinear Functions=
on Modeling the Aqueous Solubility of Organic Compounds by Two Structure R=
epresentation Methods. J. Comput.-Aided Mol. Design 2004, 18, 75-87. (c) Schmid, B. Deriving a Linea=
r Model for Predicting the Solubility Coefficient for Organic Molecules.&nb=
sp;Personal Communications 2005.
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopp=
le, K.D. Molecular Properties That Influence the Oral Bioavailability of Dr=
ug Candidates. J. Med. Chem. 2002, =
;45 (12), 2615-2623.
- Hendrickson, J.B.; Huang, P.; Toczko, A.G. Molecular Complexity: A Simp=
lified Formula Adapted to Individual Atoms. J. Chem. Inf. Comput. =
Sci. 1987, 27, 63-67.
- Gasteiger, J; Jochum, C. An Algorithm for the Perception of Synthetical=
ly Important Rings. J. Chem. Inf. Comput. Sci. 1=
979, 19, 43-48.
- Petitjean, M. Applications of the radius-diameter diagram to the classi=
fication of topological and geometrical shapes of chemical compounds. =
J. Chem. Inf. Comput. Sci. 1992, 32=
, 331-337.
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors=
. Wiley-VCH, Weinheim: 2000, Vol. 11.
- Volkenstein, M.V. Configurational Statistics of Polymeric Chai=
ns. Wiley-Interscience, New York: 1963.
- Tanford, C. Physical Chemistry of Macromolecules. Wi=
ley, New York: 1961.
- (a) Moreau, G.; Broto, P. Nouv. J. Chim. 198=
0, 4, 359-360. (b) Broto, P.; Moreau, G.; Vandycke, =
C. Eur. J. Med. Chem. Chim. Ther. 1984,=
19, 66-70.
- Bauknecht, H.; Zell, A.; Bayer, H.; Levi, P.; Wagener, M.; Sadowski, J.=
; Gasteiger, J. Locating Biologically Active Compounds in Medium-Sized Hete=
rogeneous Datasets by Topological Autocorrelation Vectors: Dopamine and Ben=
zodiazepine Agonists. J. Chem. Inf. Comput. Sci. 1996, 36, 1205-1213.
- (a) Wagener, M.; Sadowski, J.; Gasteiger, J. Assessing the Similarity a=
nd Diversity of Combinatorial Libraries by Spatial Autocorrelation Function=
s and Neural Networks. Angew. Chem. Int. Ed. Engl.199=
5, 34, 2674-2677. (b) Wagener, M.; Sadowski, J.; Gas=
teiger, J. Bewertung der Ähnlichkeit und Vielfalt von Verbindungsbibli=
otheken mit räumlichen Autokorrelationsvektoren und neuronalen Netzen.=
Angew. Chem. 1995, 107, 2892-2=
895.
- Teckentrup, A.; Briem, H.; Gasteiger, J. Mining High-Throughput Screeni=
ng Data of Combinatorial Libraries: Development of a Filter to Distinguish =
Hits from Nonhits. J. Chem. Inf. Comput. Sci. 20=
04,44, 626-634.
Copy=
right statement
ADRIANA is a registered trademark owned by Molecul=
ar Networks GmbH, Erlangen, Germany in the Federal Republic of Germany. Oth=
er product names and company names may be trademarks or registered trademar=
ks of their respective owners, in the Federal Republic of Germany and other=
countries. All rights reserved.
------=_Part_106_1939211581.1632427486786--