

OCHEM

Product features and highlights

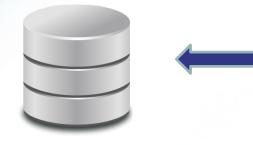
Content

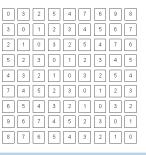
- OCHEM at a glance (components and Data upload)
- How to run models for ADME prediction?
- How to build models (Regression, Classification) and get Applicability domain?
- How to interpret models?
 - Tox Alerts
 - Set Compare
- System Architecture
- Case Study
- Our unique offer

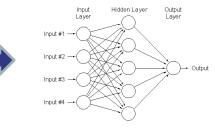
Content

OCHEM at a glance (components and Data upload)

- How to run models for ADME prediction?
- How to build models (Regression, Classification) and get Applicability domain?
- How to interpret models?
 - Tox Alerts
 - Set Compare
- System Architecture
- Case Study
- Our unique offer




What is OCHEM?


- It is a web-based modeling framework.
- Hosts Chemical and Biological data, ADME/T models together with the tools to build and validate these models.
- Allows collaboration between different scientists inter/intra organizations in storing, modeling and analyzing chemical related bioassays.

How OCHEM parts interact?

Database

Chemical structures (2D, 3D)

Experimental results, cached descriptors

Biological Pathways

Properties, their units, unit conversion rules, etc...

Calculators

Chemical-structurederived descriptor (in silico)

Biologically derived descriptor (in vitro)

Descriptors derived from Protein-ligand interaction (Autodock)

In research: Shapederived descriptor (ex: for nanoparticles toxicity)

Mining algorithms

Linear and non-linear

Applicability domain estimation

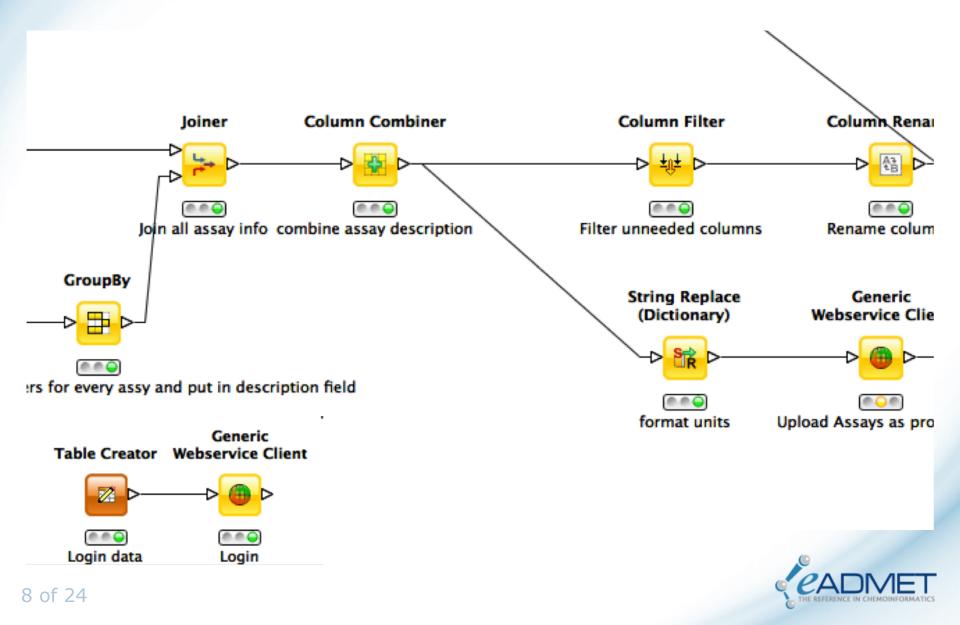
Apply bootstrapping (bagging) and cross validation cycles

Model multiple properties simultaneously

Ex: ANN, KNN, SVM, J48

Data upload

- OCHEM supports data import through sdf/text/Excel or through Knime and PipelinePilot.
- Validity rules are automatically applied for Chemical Structures and Data.
- Duplicates Alert
- Automatic unit conversion throughout the system
- 2-level of data federation by Expert users (Property Moderators, System Admins)


Batch Data Upload - Excel

Batch upload browser Please, select an XLS sheet you'd like to use to upload data

LogKOC			
🗹 casrn	🗹 name	✓ LogKoc_Tutorial	✓ molecule
15972-60-8	alachlor	2.28	CCC1=CC=CC(CC)=C1N(COC)C(=O)CCI
23184-66-9	butachlor	2.86	CCCCOCN(C(=0)CCI)C1=C(CC)C=CC=C1CC
1918-16-7	propachlor	2.42	CC(C)N(C(=0)CCI)C1=CC=CC=C1
1646-88-4	Aldicarb Sulfone	0.42	$CNC(=0)O\setminus N=C\setminus C(C)(C)S(C)(=0)=0$
2008-41-5	butylate	2.11	CCSC(=0)N(CC(C)C)CC(C)C
63-25-2	carbaryl	2.4	CNC(=0)OC1=CC=CC2=CC=CC=C12
1563-66-2	Carbofuran	1.75	CNC(=0)OC1=CC=CC2=C1OC(C)(C)C2
101-21-3	Chlorpropham	2.53	CC(C)OC(=O)NC1=CC=CC(CI)=C1
1134-23-2	cycloate	2.54	CCSC(=0)N(CC)C1CCCCC1
2303-16-4	diallate	3.28	CC(C)N(C(C)C)C(=O)SC(C(CI)=C(CI)

Batch Data upload – Sample Knime workflow

Content

✓ OCHEM at a glance (components and Data upload)

- How to run models for ADME prediction?
- How to build models (Regression, Classification) and get Applicability domain?
- How to interpret models?
 - Tox Alerts
 - Set Compare
- System Architecture
- Case Study
- Our unique offer

Applying a Model

- OCHEM hosts many Physicochemical (solubility, lipophilicity, DMSO solubility, Melting point, ...etc) and ADME/T models (CYP450 enzyme inhibition, AMES test, GI absorption,...etc) published in peer-reviewed journals.
- The system reports advanced applicability domain estimation on the estimated error in prediction together with the in/out of applicability domain flag.

Available models

Physicochemical properties

- LogP, LogS, Solubility in DMSO
- Melting point, Boiling point

Toxicity

- CYP 450 Inhibition, AhR Activation
- AMES Test, BioConcentration factor, T. Pyriformis tosicity

Bioavailability

- Gastrointestinal absorption
- BBB permeability, CACO-2

Building new models

- It is easy to create new models from existing data.
- More than 10 Machine learning algorithms (Neural networks, KNN, SVM, MLR, PLS, random forests, J48)
- More than 15 descriptor packages (Academic and Commercial)

Content

- ✓ OCHEM at a glance (components and Data upload)
- ✓ How to run models for ADME prediction?
- How to build models (Regression, Classification) and get Applicability domain?
- How to interpret models?
 - Tox Alerts
 - Set Compare
- System Architecture
- Case Study
- Our unique offer

> 20 Descriptors packages

- Commercial and academic packages
- Thousands of 0D to 3D descriptors
- Experimental data, conditions of experiment or predictions of other models are used as descriptors
- New descriptor packages can be easily integrated
- Packages can be easily combined (mix & match)

Suggested descriptors:

- 📃 E-state W
- 🗹 ALogPS (2) 👿
- 📃 GSFragment (1138) W
- 🗆 Dragon v. 6.0 (4885/3D) W
- 🖂 ISIDA fragments W
- ADRIANA.Code (211/3D)
- CDK descriptors (246/3D) W
- Inductive' descriptors (54/3D) W
- MERA descriptors (529/3D) W
- MERSY descriptors (42/3D)
 W
- Chemaxon descriptors (499/3D)
 W
- 🗆 QNPR 👿
- Spectrophores (144/3D) W

Additional or obsolete descriptors:

- 📃 OEState 👿
- 📃 MolPrint 👿
- Dragon v. 5.4 (1630/3D) W
- 🗆 Dragon v. 5.5 (3190/3D) 👿
- Structural Alerts
- MOPAC descriptors (21/3D)
 W
- ShapeSignatures (3D)

Featured descriptor package: Dragon

- Dragon 6 calculates 4885 molecular descriptors [list]
- Divided into 29 descriptor blocks (2D and 3D)
- Different versions available for backward compatibility (5.4, 5.5 and 6)
- Widely used by the industry and Academia for chemical modeling
- No extra fees for users that already posses a Dragon license
- Developed and Licensed by Talete srl^[1]

[1] R.Todeschini and V.Consonni: "Molecular Descriptors for Chemoinformatics", (2 volumes), WILEY-VCH, Weinheim (Germany) 2009, 1257 pp.

Featured descriptor package: CDK

- Open-source Java library for Chemoinformatics and Bioinformatics
- Offers variety of Constitutional, Topological, electronic, Geometrical and Hybrid descriptors
- Has both 2D and 3D descriptors
- Distributed under the GNU LGPL license

Featured descriptor package: ADRIANA.CODE

- ADRIANA.Code comprises a unique combination of methods for calculating molecular structure descriptors on a sound geometric and physicochemical basis.
 - Physicochemical properties (global descriptors)

- Shape- and size-related
- Autocorrelation of 2D interatomic distance distributions
- Autocorrelation of 3D interatomic distance distributions
- Radial distribution functions (RDF) of 3D interatomic distances
- Autocorrelation of distances between surface points
- Developed and licensed by: Molecular Networks GmbH
- No extra fees for users that already posses a license

Featured descriptor package: Chemaxon Calculators

- Implemented calculations and property predictions efficiently evaluate pharmaceutically relevant physico-chemical properties and molecular descriptors
 - Physico-chemical property predictors
 - Structural property calculations
 - Molecular Modelling
- Developed and licensed by: Chemaxon Kft.
- No extra fees for users that already posses calculators license

Featured descriptor package: ESTATE

- Electro-topological state indices combine electronic and graphtopological information about a compound.
- EState indices are separated on atom/bond type. In addition to indices, it is also possible to select E-state counts, which correspond to counts of atom or bond types according to the respective indices.
- EState indices encode electronic and topological information, and have proven useful in the establishment of QSAR and QSPR models.
- Implementation by eADMET GmbH, introduced by Lowel H. Hall and Lemont B. Kier in the 1990s.

Featured descriptor package: AlogPS

- Provides predictions for lipophilicity and water solubility
- Ranked first for the prediction of logPow in an independent study by Pfizer and Nycomed.
- logPow is known to correlate well with many biological processes.
- Usually used in combination with other descriptor packages.

		Pf	izer se					Nyc	omed			
Method	RMSE	Failed!	rank	% in <0.5	0.5- 1	ange >1	RMSE, zwitterions excluded ⁰	RMSE	rank	% in <0.5	0.5- 1	ange >1
ALOGPS	1.02		1	41	30	29	1.01	0.68	1	51	34	15
S+logP	1.02		1	44	29	27	1.00	0.69	1	58	27	15
NC+NHET	1.04		Ш	38	30	32	1.04	0.88	Ш	42	32	26
MLOGP(S+)	1.05		Ш	40	29	31	1.05	1.17	Ш	32	26	41
XLOGP3	1.07		Ш	43	28	29	1.06	0.65	1	55	34	12
MiLogP	1.10	27	Ш	41	28	30	1.09	0.67	1	60	26	14
AB/LogP	1.12	24	Ш	39	29	33	1.11	0.88	Ш	45	28	27
ALOGP	1.12		Ш	39	29	32	1.12	0.72	Ш	52	33	15
ALOGP98	1.12		Ш	40	28	32	1.10	0.73	Ш	52	31	17
OsirisP	1.13	6	Ш	39	28	33	1.12	0.85	Ш	43	33	24
AAM	1.16		Ш	33	29	38	1.16	0.94	Ш	42	31	27
CLOGP	1.23		Ш	37	28	35	1.21	1.01	Ш	46	28	22
ACD/logP	1.28		Ш	35	27	38	1.28	0.87	Ш	46	34	21
CSlogP	1.29	20	Ш	37	27	36	1.28	1.06	Ш	38	29	33
COSMOFrag	1.30	10883	Ш	32	27	40	1.30	1.06	Ш	29	31	40
QikProp	1.32	103	Ш	31	26	43	1.32	1.17	Ш	27	24	49
KowWIN	1.32	16	Ш	33	26	41	1.31	1.20	Ш	29	27	44
QLogP	1.33	24	Ш	34	27	39	1.32	0.80	Ш	50	33	17
XLOGP2	1.80		Ш	15	17	68	1.80	0.94	Ш	39	31	29
MLOGP(Dragon)	2.03		Ш	34	24	42	2.03	0.90	ш	45	30	25

and the state of the second state of the second

Featured descriptor package: Chiral descriptors

- Physicochemical atomic stereodescriptors (PAS) that represent the chirality of an atomic chiral center on the basis of empirical physicochemical properties of the ligands
- The learned models could make correct predictions about the preferred enantiomer, from the molecular structure of the substrate.
- Developed by Dr. Qingyou Zhang and Dr. Joao Aires de Sousa

Zhang, Q.-Y., & Aires-de-Sousa, J. (2006). Physicochemical stereodescriptors of atomic chiral centers. Journal of chemical information and modeling, 46(6), 2278–87. doi:10.1021/ci600235w

Featured descriptor package: ISIDA fragments

- ISIDA Fragments is a category of fragments descriptors. They use 2D Lewis graph representation of the compounds but do not consider stereoisomerism. They also are tautomer- and mesomer-dependant.
- ISIDA Fragments uses three modes of fragmentations: Paths, Trees, Neighbours
- These fragmentation modes are completed by several representations of the atoms of the molecule.
- Developed by: Laboratoire d'Infochimie, UMR 7177 Université de Strasbourg-CNRS

Featured descriptor package: ToxAlerts

- Structural alerts (also known as "toxicophores") are molecular patterns known to be associated with particular type of toxicity.
- efficient technique to detect potentially toxic chemicals.
- Screening chemical compounds against known structural alerts can be a good practice to complement the QSAR models and to help interpreting their predictions.

Sushko, I. et al, 2012. ToxAlerts: A Web Server of Structural Alerts for Toxic Chemicals and Compounds with Potential Adverse Reactions. Journal of chemical information and modeling. doi:10.1021/ci300245

Featured descriptor package: Experimental Properties

- Allows modeler to use experimental data from other modeled properties to model the property of interest.
- For example: Correlate HTS in-vitro assay data to a toxicological endpoint.
- Optimized for handling big Data with millions of points
- Specially suitable for Genomic/Proteomic approaches
- Developed by: eADMET GmbH

Other descriptor packages

AMBIT Descriptors Chemaxon scaffolds Chiral Descriptors Custom descriptors from a file Docking descriptors **ECFP** fingerprints ETM Functional groups GSFrag Inductive Descriptors

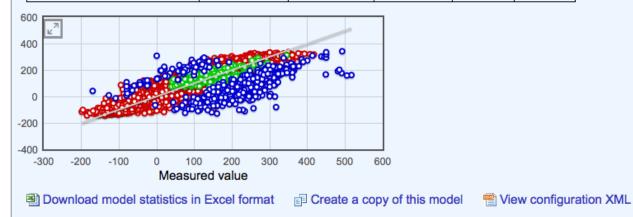
MERA & MERSY descriptors MolPrint MOPAC-derived descriptors OEState QNPR Scaffold Hunter descriptors Shape Signatures Silicos-It scaffolds Spectrophores

Pre-processing of descriptors

- Unsupervised methods
 - Eliminate near constant descriptors
 - Group highly-correlated descriptors
 - Use PCA
 - Use Unsupervised Forward Selection
 - Select descriptors manually or/and from a list
- Supervised methods
 - MLRA
 - PLS
- In development
 - Genetic algorithms
 - Variable importance estimation

Model statistics (regression)

Overview

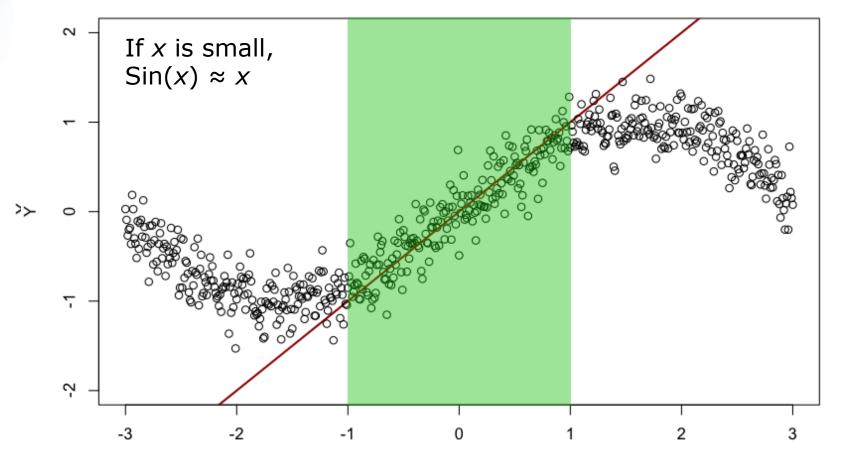

Applicability domain

Model name: Melting Point - 3D (Dragon 6 + Corina) [rename], published in Sample OCHEM models public identifier is 67 Predicted property: Melting Point Training method: ANN modeled in °C

Data Set	#	R2	q 2	RMSE	MAE
• Training set: A MP new	25547 records	0.821 ± 0.005	0.82 ± 0.005	37 ± 0.4	28 ± 0.3
o Test set: Bergstrom 🗘 [x]	277 records	0.53 ± 0.09	0.5 ± 0.1	38 ± 3.1	30 ± 2.6
 Excluded from training set 	472 records	0.11 ± 0.06	0 ± 0.4	168 ± 5.8	159 ± 5.1

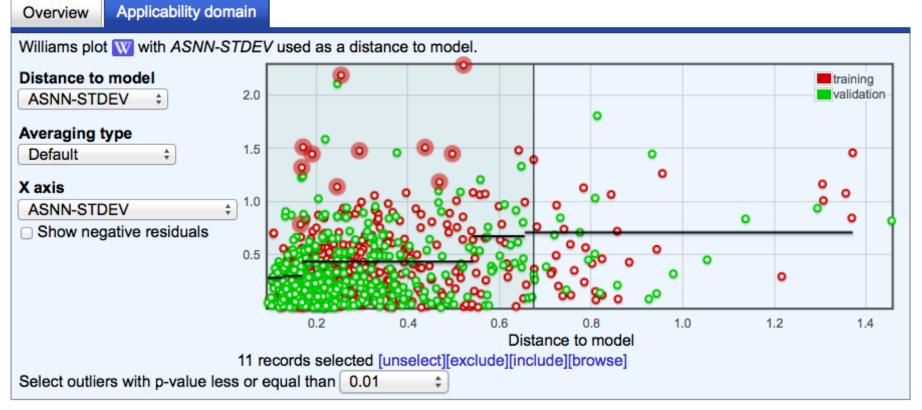
[Dragon6 (blocks: 1-29)] Correl. limit: 0.95 Variance threshold: 0.01, Maximum value: 500000, using UFS Supersab, 1000 iterations, 3 neurons ensemble=64 additional param PARTITION=3,SELECTION=2 5-fold cross-validation

> Calculated in 132989 seconds Size: 25788 Kb

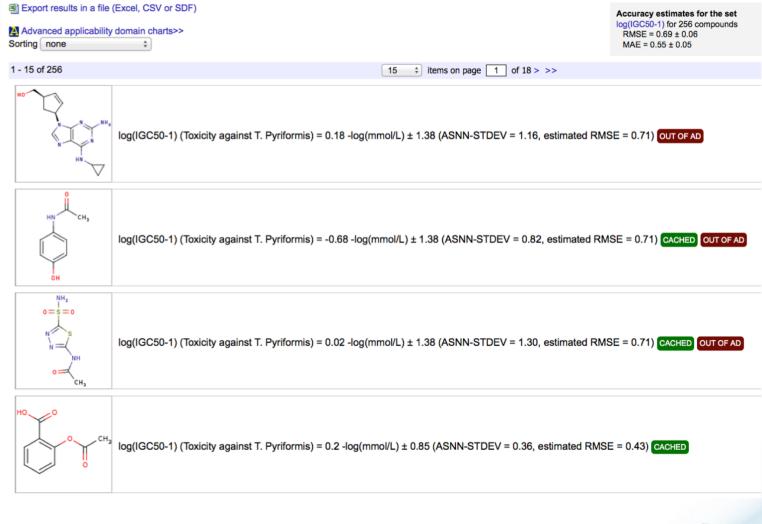


- Multiple statistical measures + confidence intervals •
- Export for offline inspection •
- Interactive scatter plot •

Export configuration XML


Accuracy of prediction

28 of 24


Applicability domain assessment (regression)

- Several applicability domain measures (bagging-based for all methods; standard deviation, correlation in the property space, leverage, etc.)
- Automatic exclusion of outliers based on *p-value*

Prediction of new molecules (regression)

Model statistics (classification)

Overview Applicability domain

Model name: Ames levenberg [rename], published in Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set. public identifier is 1 Predicted property: AMES

Training method: ANN

Data Set	#	Accuracy	Balanced accuracy
• Training set: Ames challenge training	4357 records	78.1% ± 1.2	77.9% ± 1.2
• Test set: Ames challenge test [x]	2181 records	79.9% ± 1.7	79.8% ± 1.7

Real↓/Predicted→	inactive	active				
inactive	1521	495				
active	460	1883				
Training (Original)						

Real↓/Predicted→	inactive	active			
inactive	802	207			
active	232	940			
Test (Original)					

Number of compounds ignored because of errors in original model = 2

Download model statistics in Excel format

🖷 View configuration XML 🛛 🖷 🛛

Export configuration XML

- Confusion matrices
- Support for binary and multi-class classification

[OEstate]

Correl. limit: 0.95 Variance threshold: 0.0, Maximum value: 999999, Levenberg, 1000 iterations, 3 neurons ensemble=100 additional param PARALLEL=10 5-fold cross-validation

> Calculated in 2402 seconds Size: 948 Kb

Accuracy of predictions for classification model

Overview A

Applicability domain

Model name: Ames levenberg, published in Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set. public identifier is 1 Predicted property: AMES Training method: ANN

Correl. limit: 0.95 Variance threshold: 0.0, Maximum value: 999999, Levenberg, 1000 iterations, 3 neurons ensemble=100 additional param PARALLEL=10 5-fold cross-validation

[OEstate]

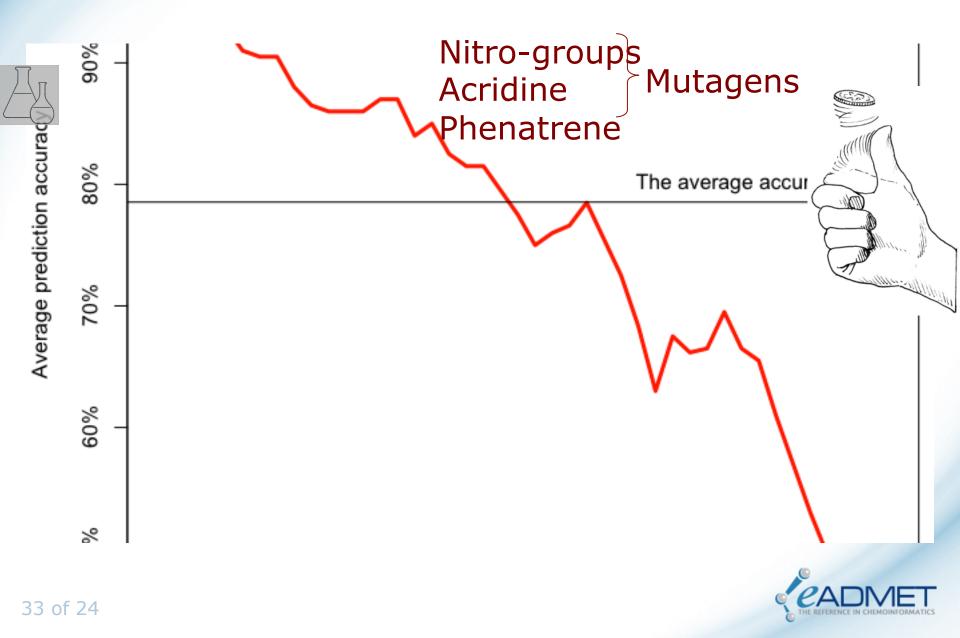
Size: 450 Kb

Calculated in 2402 seconds

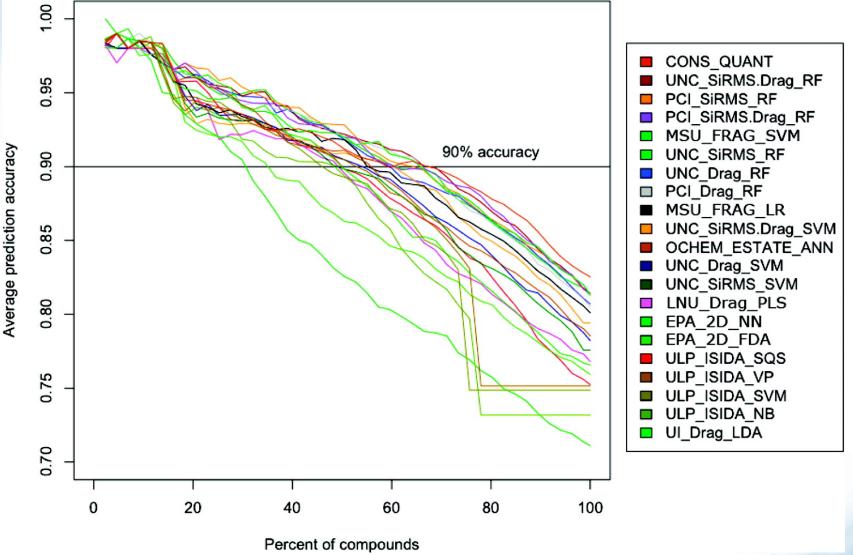
Data Set	#	Accuracy	Balanced accuracy
• Training set: Ames challenge training	4357 records (4359 selected)	78.1 ± 1.2	77.9 ± 1.3
• Test set: Ames challenge test [x]	2181 records	79.9 ± 1.7	79.8 ± 1.7

$Real{\downarrow}/Predicted{\rightarrow}$	inactive	active				
inactive	1521	495				
active	460	1883				
Training (Original)						

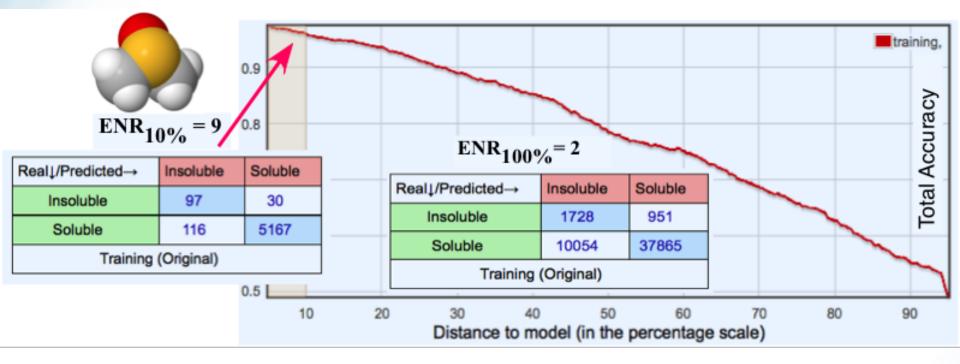
Real↓/Predicted→	inactive	active				
inactive	802	207				
active	232	940				
Test (Original)						


Overview

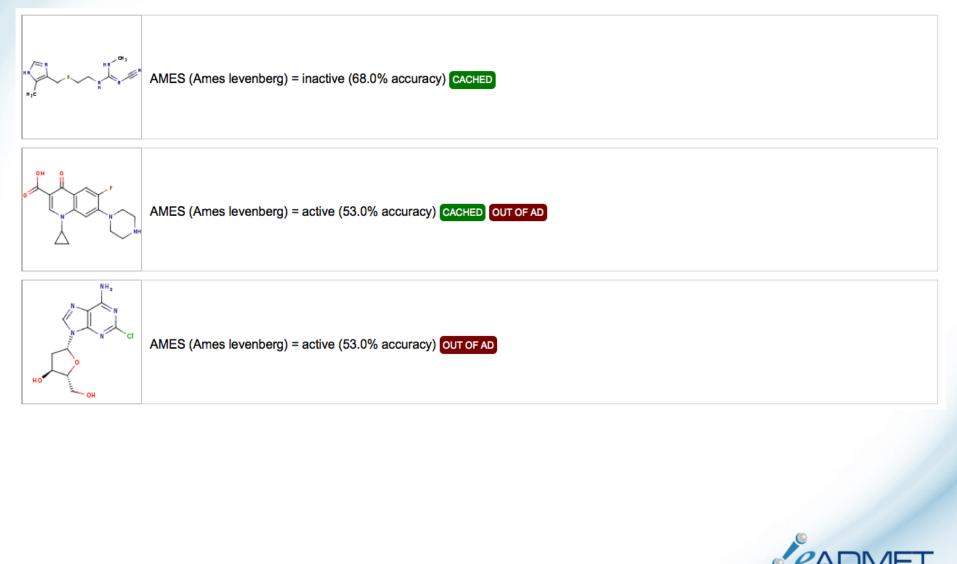
Applicability domain



Very large differences in the accuracy of prediction


Accuracy of models for AMES test set

34 of 24


Prediction of compound solubility in DMSO

The final model is based on >163k compounds – the largest published model

Prediction of new molecules (classification)

Comprehensive modeling

- Thousand of models can be simultaneously built based on preconfigured modeling templates:
- Using KNIME or Pipeline Pilot with pre-saved XML configurations exported from OCHEM
- Using the web-interface:

The comprehensive modeling feature allows you to simultaneously run multiple models with different machine learning methods, molecular descriptors and validation protocols. Please note that running multiple models may require significant computational resources and time.										
Select the training and validation : Training set (required): [] Add a validation set Select the methods you want to us										
Method	Descriptors	Descriptor selection	Model validation							
[all] [none] ANN Ø ASNN (with Library mode) ■ KNN ■ LibSVM Ø FSMLR ■ MLRA Ø PLS +add a custom template	[al] [none] IP CDK Dragon v.6 (all blocks) IP Castate and ALogPS ISIDA Fragments (Length 2 - 4) IP GSFrag Mera and Mersy Chemaxon descriptors Inductive Descriptors Inductive Descriptors Inductive Descriptors Spectrophores Shape Signatures IP Ner (SMILES - length 1 - 3 threshold 5) Two simple descriptors (MW+Number of carbons)	[ai] [none] IV Unsupervised forward selection Simple pairwise decorrelation (r < 0.95)	[all] [none] I 5-fold cross-validation 5-fold cross-validation (stratified) Bagging with 64 models +add a custom template							
Show advanced options>>										
Considering the selection above, 9 models will be created. Create the models										

Comprehensive modeling

- Multiple models overview for:
 - Comparison of hundreds of models
 - Batch operations with multiple models

*The screenshot shows the analysis of multiple models for melting point

ultiple models overview													
Predicted property: Melting Point													
Metrics RMSE - Root Mean Square Error + for Training set + Validation: Cross-validation +													
	ANN	ASNN	KNN	LibSVM	FSMLR	MLRA	PLS	ASNN(2)	LibSVM(2)	ASNN(3)	ASNN(4)	ASNN(5)	ASNN(6)
CDK	46.6	41.3	51.9	57.8	57.7	56.6	60.1	39.3	56.9	39.4	+	38.3	39.7
Dragon6 (blocks: 1-29)	42.7	40.3	54.6	78.7	51.7	49.0	64.9	38.1	78.5	37.6	37.2	38.1	38.1
OEstate, ALogPS	48.7	43.0	53.2	70.8	58.8	58.3	61.4	41.4	62.9	41.0	+	41.7	41.8
Fragmentor (Length 2 - 4)	46.6	42.8	60.7	65.8	58.1	56.1	+	41.2	65.1	40.7	40.6	38.6	38.7
GSFrag	56.8	51.2	59.6	70.8	69.1	68.5	74.7	51.1	69.7	49.4	+	43.2	49.9
Mera, Mersy	49.7	44.7	56.9	63.3	69.3	56.4	79.9	43.1	62.4	42.7	+	41.3	43.0
ChemaxonDescriptors (7.4)	48.2	42.7	50.7	58.5	68.1	58.3	60.1	40.8	57.6	40.5	+	38.8	41.0
InductiveDescriptors	59.6	50.2	59.5	73.1	98.8	68.8	70.4	48.7	72.5	48.3	+	47.9	48.7
Adriana	50.1	43.9	52.4	60.2	60.5	59.4	65.6	42.6	60.2	42.0	+	40.0	42.2
Spectrophores (accuracy=20 Stereospecificity=0 resolution=3.0)	72.5	68.2	71.1	77.8	78.3	77.6	78.1	67.2	77.1	67.1	+	64.8	65.8
ShapeSignatures	70.9	68.0	70.9	79.3	165.0	76.0	78.1	67.1	79.0	67.2	+	66.8	66.6
QNPR (SMILES - length 1 - 3 threshold 5)	48.7	45.0	64.3	64.8	60.2		60.6	43.3	63.9	42.7	42.7	40.4	43.0
Dragon6 (blocks: 1 28)	76.6	76.1	76.6	82.4	82.2	82.2	82.2	75.5	82.0	75.2	+	75.4	75.6
OEstate, ALogPS				+	55.5				+		+	38.8	38.8

- ✓ OCHEM at a glance (components and Data upload)
- ✓ How to run models for ADME prediction?
- ✓ How to build models (Regression, Classification) and get Applicability domain?
- How to interpret models?
 - Tox Alerts
 - Set Compare
- System Architecture
- Case Study
- Our unique offer

How to interpret models?

- Multi-learning development of models for several properties simultaneously (any combination of quantitative and qualitative properties)
- Stratified learning (bagging, cross-validation) for imbalanced datasets
- Feature nets use prediction of other models as descriptors
- Use experimental (or calculated) values as descriptors
- Use externally calculated descriptors

ToxAlerts

- Screening millions of compounds against published toxicity alerts
- Filter alerts by endpoints or publications
- Create or upload custom SMARTS rules

Endpoint:	
All endpoints	÷
All endpoints	٦
Acute Aquatic Toxicity to delete	
Skin sensitization	
Non-genotoxic carcinogenicity	
Genotoxic carcinogenicity, mutagenicity	
Reactive, unstable, toxic	
Potential electrophilic agents	
Idiosyncratic toxicity (RM formation)	
Custom filters	
Functional groups	

Article:	
All articles #	-
All articles	
1988 Ashby	
1990 Hermens	
1992 Verhaar, H.J.M.	
1994 Payne	
1994 Barratt	
2004 Gerner	
2005 Kazius	
2005 CheckMol	
2005 Kalgutkar	
2005 Bailey	
2008 Enoch	
2008 Benigni	
2011 Maybridge	
2011 Enamine	
2011 "Ontario"_filters	
2011 ChemDiv	
2011 Life_Chemicals	
2011 Enoch	
2012 Tetko, I.V.	

Screening of virtual libraries

 ToxAlerts: Screening results

 The compounds that matched any alerts grouped by endpoints, publications and by alerts themselves

ENDPOINTS		x	View records for the filtered compounds STag the 52021 filtered molecules
C. Prostor unstable tools		50004	1 - 15 of 52021
 Reactive, unstable, toxic 		52021 compounds	
PUBLICATIONS			Allenes (for Reactive, unstable, toxic in 2011 ChemDiv) Cumulated double bonds (for Reactive, unstable, toxic in 2011 Enamine)
○ 2011 ChemDiv		21989 compounds	C, N, O, P and S atoms in unusual valence states (for Reactive, unstable, toxic in
○ 2011 Enamine		33145 compounds	2011 Enamine)
○ 2011 Life Chemicals		26415 compounds	MoleculeID: M1711
DETECTED ALERTS			Acrylates and similar (for Reactive, unstable, toxic in 2011 ChemDiv)
⊖ Allenes	2011 ChemDiv	1 compounds	Positively charged N-heterocycles (for Reactive, unstable, toxic in 2011 ChemDiv)
Cumulated double bonds	2011 Enamine	2 compounds	Activated haloaromatics (for Reactive, unstable, toxic in 2011 Enamine)
 Contrained double bonds C, N, O, P and S atoms in unusual valence states 	2011 Enamine 2011 Enamine	40 compounds	Cumulated double bonds (for Reactive, unstable, toxic in 2011 Enamine) C, N, O, P and S atoms in unusual valence states (for Reactive, unstable, toxic in
 Acrylates and similar 	2011 ChemDiv	1944 compounds	
Positively charged N-heterocycles	2011 ChemDiv	674 compounds	N,N-Dialkyl aniline derivatives (3) (for Reactive, unstable, toxic in 2011 Enamine)
Activated haloaromatics	2011 Enamine	6133 compounds	MoleculeID: M7123
 N.N-Dialkyl aniline derivatives (3) 	2011 Enamine	96 compounds	Moleculeic): Mr 123
β -hydroxy substituted carbonyls	2011 Life Chemicals	209 compounds	
o p-Aminoanilines	2011 Enamine	104 compounds	β-hydroxy substituted carbonyls (for Reactive, unstable, toxic in 2011
 Activated halides (α-halogen substituted N-heterocycles) 	2011 Life Chemicals	2466 compounds	Life_Chemicals)
 Over halogenated rings 	2011 Life Chemicals	403 compounds	
 α-Halogen substituted N-heterocycles 	2011 Enamine	2466 compounds	MoleculeID: M2647
	2011 Life Chemicals	566 compounds	
 Polycyclic 4 fused rings and more 	2011 Life Chemicals	1326 compounds	NH ₂
 Ketones 	2011 Enamine	2081 compounds	
	2011 Life Chemicals	5298 compounds	p-Aminoanilines (for Reactive, unstable, toxic in 2011 Enamine)
 Other undesirable policyclic (adamantane derivatives) 	2011 Life Chemicals	1551 compounds	
Acrylamides	2011 ChemDiv	3845 compounds	HN_CH ₃ MoleculeID: M1350
 Activitation des Michael acceptors (α,β-unsaturated carbonyls) 	2011 Life Chemicals	3813 compounds	
Aldimines and ketimines	2011 Life_Chemicals 2011 ChemDiv	1178 compounds	
Hydrazones and similar	2011 ChemDiv	4167 compounds	0
 N-N Single bound not in a ring 	2011 Life Chemicals	4225 compounds	C, N, O, P and S atoms in unusual valence states (for Reactive, unstable, toxic in
 Ketal 	2011 Life Chemicals	265 compounds	2011 Enamine)
-	2011 Enamine	5724 compounds	
 Singel acyclic N-N bonds Linear thiourses 	2011 Enamine	5724 compounds	MoleculeID: M12971

ToxAlerts

- Extension with > 300 functional groups
- Filters for frequent hitters
- 158 for promiscuous compounds [1];
- 480 for Pan Assay Interference (PAIN) compounds [2].
- Collaboration with European ScreeningPort GmbH and HMGU to develop new filters for alpha screens frequent hitters

- [1] B. C. Pearce, et al. J. Chem. Inf. Model. 2009, 46, 1060-1068.
- [2] J. B. Baell, G. A. Holloway. *J. Med. Chem.* **2010**, 53, 2719–2740.

- ✓ OCHEM at a glance (components and Data upload)
- ✓ How to run models for ADME prediction?
- ✓ How to build models (Regression, Classification) and get Applicability domain?
- How to interpret models?
- ✓ Tox Alerts
 - Set Compare
- System Architecture
- Case Study
- Our unique offer

SetCompare

Comparison of structural features/toxic groups

Soluble and in-soluble in DMSO

Biodegradable and not

Descriptor	In set 1 (2681 molecules)	In set 2 (47939 molecules)	p-Value	Descriptor	In set 1 (1221 molecules)	In set 2 (717 molecules)	p-Value
LS A A A A A	1129	7551	7.49E-216	Halogens F CI Br I At	384	49	4.08E-41
R R	985	6612	3.63E-180	R—X	355	40	1.03E-40

- ✓ OCHEM at a glance (components and Data upload)
- ✓ How to run models for ADME prediction?
- ✓ How to build models (Regression, Classification) and get Applicability domain?
- ✓ How to interpret models?
 - ✓ Tox Alerts
 - ✓ Set Compare
- System Architecture
- Case Study
- Our unique offer

System Architecture

- Powerful engines integrated
- Automatic control of workflow and parallelization of tedious computational tasks

Engines and Protocols

- Xemistry substructure search is integrated into OCHEM
- Chemaxon Standardizer is used for standardizing chemical structures and handling different file formats
- MySQL and NoSQL are used as database engines
- All communications with the online platform is protected by SSL

Calculations distribution

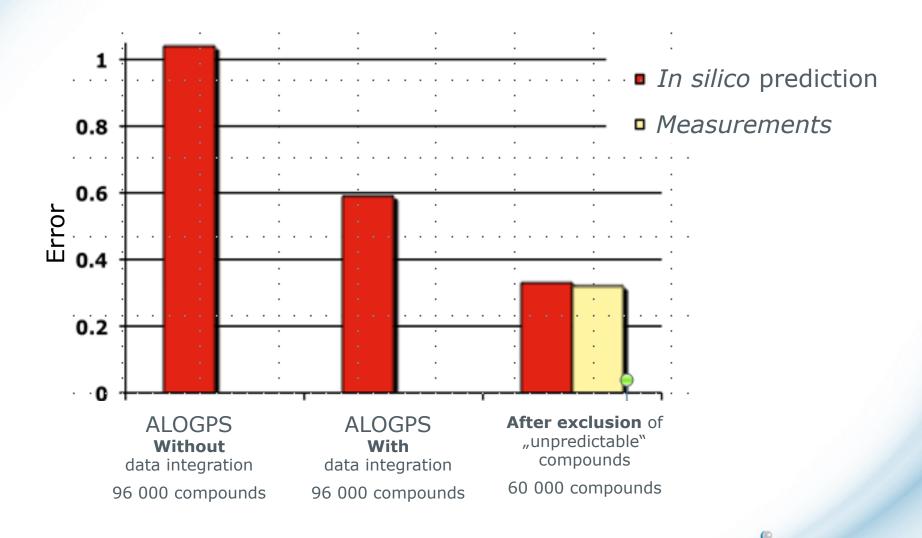
- The system can be implemented on any Grid, Cloud or distributed calculation environment.
- Current implementations include Amazon Cloud, VMWare ESX and Sun Grid Engines
- Implementation on more than 500 CPU cores
- Completely automated distribution of tasks, cllection of results and update of the distributed code to the latest versions.
- Simple interface to control the number of running calculation instances
- Configurable tasks priority

- ✓ OCHEM at a glance (components and Data upload)
- ✓ How to run models for ADME prediction?
- ✓ How to build models (Regression, Classification) and get Applicability domain?
- ✓ How to interpret models?
 - ✓ Tox Alerts
 - ✓ Set Compare
- ✓ System Architecture
- Case Study
- Our unique offer

Case Study: Comparison of Different Algorithms

Algorithms

(without data integration)



	Method	RMSE	Failed ¹	rank	% in <0.5	error r 0.5- 1	ange >1	RMSE, zwitterions excluded ²	. RMSE	rank	% in <0.5	error r 0.5- 1	ange >1	
eADMET→	ALOGPS	1.02		I	41	30	29	1.01	0.68	T	51	34	15	
Competitor →	S+logP	1.02		Т	44	29	27	1.00	0.69	1	58	27	15	
	NC+NHET	1.04		II	38	30	32	1.04	0.88	III	42	32	26	
	MLOGP(S+)	1.05		II	40	29	31	1.05	1.17	III	32	26	41	
	XLOGP3	1.07		II	43	28	29	1.06	0.65	1	55	34	12	
	MiLogP	1.10	27	II	41	28	30	1.09	0.67	1	60	26	14	
	AB/LogP	1.12	24	II	39	29	33	1.11	0.88	III	45	28	27	Decreasing prediction error,
	ALOGP	1.12		II	39	29	32	1.12	0.72	II	52	33	15	Increasing performance
	ALOGP98	1.12		II	40	28	32	1.10	0.73	Ш	52	31	17	
	OsirisP	1.13	6	II	39	28	33	1.12	0.85	Ш	43	33	24	
	AAM	1.16		III	33	29	38	1.16	0.94	III	42	31	27	
	CLOGP	1.23		III	37	28	35	1.21	1.01	III	46	28	22	
Competitor →	ACD/logP	1.28		III	35	27	38	1.28	0.87	III	46	34	21	
	CSlogP	1.29	20	III	37	27	36	1.28	1.06	III	38	29	33	
	COSMOFrag	1.30	1088 ³	III	32	27	40	1.30	1.06	III	29	31	40	
	QikProp	1.32	103	III	31	26	43	1.32	1.17	III	27	24	49	
	KowWIN	1.32	16	III	33	26	41	1.31	1.20	III	29	27	44	
	QLogP	1.33	24	III	34	27	39	1.32	0.80	II	50	33	17	
	XLOGP2	1.80		III	15	17	68	1.80	0.94	III	39	31	29	
	MLOGP(Dragon)	2.03		III	34	24	42	2.03	0.90	III	. 45	30	25	

Mannhold, R. et al, 2009, 98(3), 861-893.

Case Study: Accuracy of eADMET's Predictions

Tetko et al, Chem. Biodiver., 2009, 6, 197-202.

- ✓ OCHEM at a glance (components and Data upload)
- ✓ How to run models for ADME prediction?
- ✓ How to build models (Regression, Classification) and get Applicability domain?
- ✓ How to interpret models?
 - ✓ Tox Alerts
 - ✓ Set Compare
- ✓ System Architecture
- ✓ Case Study
- Our unique offer

Our unique offer

- collaborative approach to data handling users can add, modify and delete data; can use, create and publish model; create hidden and public data
- Mandatory reference to an origin of information each record in a database should contain a reference to a source (article, book, proceeding or even personal communications), where the data were published
- Storing rich meta-information measurement conditions to increase data quality
- Several tools to automatize and support decision making integration with Knime (Pipe-Line pilot), provides and consumes web services, estimates accuracy of prediction; manage duplicated records
- Aimed at model building

filter by property, article, substructure, export data either to internal modelling tools or download as Excel file; models with >150,000 molecules; sparse data format (millions of descriptors); support of various descriptors and machine learning tools

 Advanced Analysis tools chemogenomic approaches; structural alerts; SetCompare utility; support of mixtures

Thank you